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Abstract 

    This review examines the integration of drug repurposing and personalized medicine as 

complementary approaches to transforming healthcare delivery. Drug repurposing identifies new 

therapeutic uses for existing medications with established safety profiles, while personalized 

medicine tailors treatments to individual patient characteristics. This integration offers reduced 

development time and costs, expanded options for rare and complex diseases, and targeted 

interventions based on patient-specific biomarkers. The manuscript explores translational pathways, 

including drug-centric, target-centric, and disease-centric approaches, as well as emerging 

computational and AI methodologies. Case studies in neurological disorders, oncology, and seizure 

disorders demonstrate successful applications. Despite promising outcomes, challenges persist 

across regulatory frameworks, intellectual property protection, data integration, and the 

management of biological variability among patients. Recommendations include strengthening 

regulatory support, developing robust validation pipelines, promoting open-source, collaborative 

models, and leveraging AI and big data technologies. Through coordinated stakeholder efforts, drug 

repurposing in personalized medicine can become a cornerstone of precision healthcare, providing 

more effective, patient-tailored treatments.  

 

Keywords: Drug repurposing; Personalized medicine; Translational pharmacology; Precision healthcare; 

Biomarker-guided therapy 

Introduction 

Overview of drug repurposing and personalized medicine 

Drug repurposing and personalized medicine are powerful, complementary approaches in modern 

healthcare. Drug repurposing, also known as drug repositioning, involves identifying new therapeutic 

uses for existing drugs [1]. This strategy leverages already available safety and efficacy data, enabling 

faster, more cost-effective pathways to clinical application. Traditionally, drug development is a long 

and costly process, often requiring over a decade and billions of dollars to bring a single new drug to 

market. Drug repurposing can bypass the need for early-stage trials, reducing both development time 

and financial burden [2]. Personalized medicine, on the other hand, focuses on tailoring treatments to 

each patient's individual characteristics, often based on genetic, biomolecular, and environmental 

factors [3,4]. By addressing patient-specific variations in disease mechanisms and responses to 

treatment, personalized medicine aims to optimize therapeutic efficacy and minimize adverse effects. 
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Combining these two approaches—repurposing existing drugs within a personalized framework- has 

the potential to rapidly expand therapeutic options for patients with rare, complex, or treatment-

resistant diseases. 

Rationale for integrating drug repurposing into personalized medicine 

Integrating drug repurposing with personalized medicine offers a unique and promising solution to 

several unmet clinical needs. While drug repurposing expedites the introduction of treatments, 

personalizing these repurposed drugs allows for targeting specific mechanisms within an individual's 

pathology. Personalized drug repurposing is especially valuable in diseases with high interpatient 

variability, such as cancers, neurodegenerative diseases, and metabolic disorders, where generalized 

treatment approaches often fall short [5-9]. Furthermore, with the advent of high-throughput screening 

technologies, computational methods, and artificial intelligence, identifying viable drug repurposing 

candidates suited to an individual's biomolecular profile has become increasingly feasible. Together, 

these approaches underscore the transformative potential of repurposing in personalized medicine. 

Benefits of drug repurposing in personalized medicine 

Reduced development time and cost 

Drug repurposing offers a significant reduction in development time and cost, key benefits that make 

it an attractive alternative to conventional drug development. Traditional drug discovery involves 

extensive preclinical studies and clinical trials, a process that can take 10-15 years and cost upwards of 

$2.5 billion [10]. Drug repurposing circumvents much of the early-stage development pipeline by 

focusing on compounds already tested in humans, enabling researchers to move directly into phase II 

or phase III trials. Repurposing a drug can therefore bring treatments to market in 3-12 years, often at 

less than a third the cost of novel drug development [9]. For personalized medicine, this shortened 

timeline is invaluable, as it enables the faster development of patient-specific therapies. By identifying 

repurposed drugs with mechanisms aligned to particular genetic, molecular, or phenotypic profiles, 

clinicians can rapidly provide tailored treatments to patients, particularly those with conditions that 

currently lack effective interventions [6]. For example, existing oncology drugs have been repurposed 

to target molecular pathways in non-cancer diseases, such as autoimmune disorders, where shared 

pathophysiological mechanisms exist [6,9]. This approach not only accelerates the availability of 

treatment but also makes personalized medicine more accessible to patients. To quantify these 

advantages, Table 1 compares typical timelines, costs, and clinical success rates for de novo discovery 

versus repurposed drugs. 

Table 1. Development time, cost, and success metrics: de novo vs repurposed drugs. 

Metric (median) De-novo discovery Repurposed drug (new indication) 

Total development time (years) 10 – 15 years [11] 3 – 7 years [12] 

Direct R & D cost (USD, billions)  ≈ 1.4 B out-of-pocket; ≈ 2.6 B capitalized [11]  ≈ 0.3 B [12,13]  

Pre-clinical attrition (%)  45 % failure rate [14]  ≤ 20 % (safety data already known)[10]  

Phase II success (“go-to-III”)  28 % average for novel NMEs [15]  ≈ 55 % for repositioned assets [10] 

Median FDA review time (months)  12 months standard NDA (505(b)(1)) [16]  6 – 13 months via 505(b)(2) pathway [16,17] 

 

Enhanced treatment options for rare and complex diseases 

Repurposing drugs expands treatment options, particularly for rare and complex diseases, where 

the lack of effective therapies poses a significant challenge. Diseases with low prevalence, such as rare 

genetic disorders, often receive limited attention in traditional drug development due to low market 

incentives [18]. Drug repurposing offers a viable solution to this issue by allowing the application of 

existing drugs with known safety profiles to new therapeutic areas. 

In personalized medicine, the ability to repurpose drugs that target rare disease mechanisms enables 

treatments to be tailored to individual patients who may otherwise have limited options. For instance, 

drugs initially developed for inflammatory diseases have been repurposed for rare neuroinflammatory 
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disorders such as neuromyelitis optica, a severe autoimmune condition with limited treatment options 

[19]. In complex diseases with heterogeneous etiologies, such as Alzheimer’s and Parkinson’s disease, 

repurposing drugs offers a pathway to targeted therapies that address disease-specific molecular 

abnormalities. 

Targeting patient-specific mechanisms and biomarkers 

One of the primary goals of personalized medicine is to match patients with therapies tailored to 

their specific disease mechanisms, often determined by genetic or biomolecular markers. Drug 

repurposing aligns well with this goal, as it provides the flexibility to screen existing drugs for 

compatibility with patient-specific disease biomarkers. The availability of extensive drug libraries 

allows researchers to identify compounds that interact with unique disease targets, such as genetic 

mutations or dysregulated signaling pathways. 

In personalized cancer therapy, for example, certain drugs initially approved for breast cancer have 

been successfully repurposed for tumors with similar genetic mutations in other tissues. Trastuzumab, 

a monoclonal antibody targeting the HER2 receptor, was originally developed for HER2-positive breast 

cancer but has since been repurposed for HER2-positive gastric cancer [20]. Such biomarker-driven 

repurposing has also been explored in neurodegenerative diseases, where drugs targeting tau or 

amyloid-beta aggregation pathways may provide personalized solutions for Alzheimer’s patients with 

specific biomarker profiles. 

Translational pathways for drug repurposing in personalized medicine 

Drug-centric approach 

The drug-centric approach to repurposing focuses on finding new applications for existing drugs 

based on their established pharmacological properties. This method is particularly advantageous for 

personalized medicine, as it allows direct testing of existing drugs against disease-specific targets 

without the need to design new compounds. Drugs like thalidomide, initially developed as a sedative, 

have been successfully repurposed for complex diseases like multiple myeloma and certain types of 

inflammatory disorders due to their immunomodulatory effects [21]. By employing a drug-centric 

approach, researchers can match available drugs to new indications based on the molecular mechanisms 

they modulate, thus facilitating rapid clinical translation. 

Target-centric approach 

In the target-centric approach, drug repurposing efforts are directed toward specific molecular 

targets known to play a role in the disease's pathology. This approach is particularly useful in 

personalized medicine, where patient-specific molecular or genetic abnormalities can be targeted 

precisely. For instance, the mammalian target of rapamycin (mTOR) pathway is commonly 

dysregulated in various cancers and neurodegenerative diseases, prompting research into repurposing 

mTOR inhibitors for targeted treatment [22-26]. Repurposing drugs based on shared molecular targets 

allows clinicians to bypass traditional pharmacodynamic screening and proceed directly to validation 

studies. The efficacy of mTOR inhibitors, like rapamycin and its analogs, in treating both cancer and 

neurodegenerative diseases illustrates the success of the target-centric approach [22]. Computational 

methods and omics data integration have made target-centric repurposing increasingly feasible, 

enabling rapid identification of drugs that can modulate key pathways linked to patient-specific 

biomarkers. 

Disease-centric approach 

The disease-centric approach to repurposing focuses on identifying drugs that target disease-

modifying pathways [10,27]. This approach is particularly advantageous for conditions where disease 

mechanisms are not fully understood or where multiple overlapping pathways contribute to disease 

progression. For example, neurodegenerative diseases such as Alzheimer’s and Parkinson’s involve 

complex pathologies, including inflammation, oxidative stress, and protein aggregation. Repurposed 

drugs targeting these pathways can potentially alter disease trajectories and improve patient outcomes. 
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For instance, drugs such as anti-inflammatory agents, antioxidants, and autophagy enhancers have been 

repurposed for Alzheimer’s based on their ability to modulate disease-related pathways [28-30]. 

Disease-centric repurposing is particularly 

relevant in personalized medicine, where targeting 

a patient’s unique disease state rather than a 

specific biomarker allows for a more holistic 

approach to treatment. Moreover, a disease-centric 

approach supports the development of multi-

target therapies, which are often essential for 

managing complex, multifactorial diseases [31]. 

Figure 1 illustrates the three complementary 

translational pathways—drug-centric, 

target-centric, and disease-centric—that converge 

on clinical validation and ultimately deliver 

patient-specific treatment outcomes.  
Figure 1. Translational pathways for drug repurposing in 

personalized medicine. 

 

A flowchart depicting three parallel repurposing strategies-drug-centric, target-centric, and disease-

centric—converging on clinical validation, personalized trial design, and ultimately patient-specific 

treatment 

Emerging computational and AI approaches 

Advances in computational biology and artificial intelligence (AI) have transformed drug 

repurposing by enabling the efficient screening of vast datasets to identify potential repurposing 

candidates [32]. AI-driven algorithms can analyze genomic, transcriptomic, and proteomic data to 

detect molecular similarities between diseases and predict candidate drugs that could modulate disease 

pathways [33]. These methods enable a more personalized approach by matching drugs to individual 

disease signatures or specific patient biomarker profiles. In personalized medicine, AI-based drug 

repurposing platforms facilitate the identification of compounds that can address patient-specific needs, 

thereby optimizing treatment efficacy and reducing adverse effects [34]. For example, machine learning 

models have been used to identify FDA-approved drugs that modulate gene expression patterns 

associated with neurodegenerative diseases, such as ALS and Huntington's disease [35-37]. This ability 

to predict drug-disease interactions based on patient-specific data accelerates the discovery of 

repurposing opportunities tailored to individual 

molecular profiles. Figure 2 illustrates how multi-

omics-guided patient stratification feeds directly into 

adaptive and non-adaptive clinical-trial designs, 

forming the critical bridge from discovery to 

precision medicine. 
 

 

Figure 2. Flow of clinical trials—interventional or observational—

integrating multi-omics profiling to delineate disease endotypes. 

Reproduced under CC BY 4.0 [38]. 

 

Case studies in drug repurposing and personalized medicine 

Neurological disorders 

The application of drug repurposing in personalized medicine has shown promising outcomes in 

the management of neurological disorders, which often lack effective treatments [39–42]. 
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Neurodegenerative diseases like Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS) 

involve multifaceted pathologies, including protein aggregation, mitochondrial dysfunction, oxidative 

stress, and inflammation. Repurposed drugs targeting these pathways can provide tailored treatments 

for patients based on specific disease mechanisms. For example, fingolimod, a drug initially approved 

for multiple sclerosis, has shown potential in targeting TDP-43 pathology associated with ALS [43]. 

TDP-43 proteinopathy, characterized by the accumulation of TAR DNA-binding protein-43, is present 

in various neurodegenerative diseases, including ALS and frontotemporal dementia. Using Drosophila 

models, researchers have demonstrated that fingolimod alleviates symptoms associated with TDP-43 

toxicity [44,45], suggesting it as a candidate for ALS treatment. Similarly, the use of calcineurin 

inhibitors like cyclosporine A has been investigated in Alzheimer’s disease, where neuroinflammation 

and calcium dysregulation contribute to cognitive decline [46-48]. Repurposing cyclosporine, which 

modulates calcineurin activity, could help slow disease progression in patients with specific biomarkers 

of calcineurin dysregulation [49]. 

Repurposing drugs for personalized neurodegenerative treatment allows clinicians to select 

therapies based on patient-specific markers, such as genetic mutations or proteinopathies, increasing 

the likelihood of therapeutic success. By stratifying patients based on biomarkers like TDP-43 or tau, 

drug repurposing offers a more targeted approach to managing these challenging diseases [50]. 

Oncology 

Oncology has been a major beneficiary of drug repurposing, with numerous examples of repurposed 

drugs finding new applications in targeted cancer therapies. Cancer is a highly heterogeneous disease, 

with different mutations and pathways activated in different patients [51]. Repurposing drugs based on 

tumor-specific genetic alterations aligns well with the principles of personalized medicine, enabling 

targeting of specific oncogenic pathways or mutations. A well-known example is the use of non-cancer 

drugs, such as metformin, in oncology. Initially developed to treat type 2 diabetes, metformin has 

shown anticancer potential in specific patient subsets [52]. Studies indicate that metformin activates 

AMPK (adenosine monophosphate-activated protein kinase) and inhibits mTOR, a pathway implicated 

in cancer cell proliferation. This effect is especially beneficial in tumors with mutations in the PI3K-

AKT-mTOR pathway. For patients with metabolic profiles that make their cancer cells more dependent 

on glycolysis, metformin serves as an effective adjunct to traditional chemotherapy, demonstrating the 

synergy between repurposing and personalization [52]. Another notable example is the repurposing of 

PARP (poly ADP ribose polymerase) inhibitors, initially designed for treating BRCA-mutated breast 

and ovarian cancers. These inhibitors have now been expanded to target cancers with homologous 

recombination repair deficiencies beyond BRCA mutations, such as those with PALB2 or RAD51 

mutations [53]. In this way, repurposing PARP inhibitors for patients with broader mutation profiles 

has personalized cancer therapy options, expanding the reach of precision oncology. 

Status epilepticus and seizure disorders 

Status epilepticus, a prolonged seizure state with high morbidity and mortality, poses unique 

treatment challenges, particularly because drug resistance often develops over the course of the seizure 

[54]. Repurposed drugs targeting specific molecular mechanisms implicated in status epilepticus have 

shown promise as personalized treatments. Drug repurposing is especially valuable in this context due 

to the urgency of treatment and the limitations of current options. Benzodiazepine resistance, a common 

issue in refractory status epilepticus, has prompted the repurposing of drugs like ketamine and 

tacrolimus, both of which target NMDA receptors involved in excitotoxicity [55]. Additionally, AI and 

computational models have been used to identify potential repurposed candidates based on gene 

expression changes observed in seizure disorders [56,57]. For instance, recent studies have identified 

metformin as a potential neuroprotective agent for status epilepticus, due to its effects on mitochondrial 



Elechi et al.     

 

6 

 

function and oxidative stress, pathways relevant to seizure-induced neuronal damage [58,59]. Such 

targeted repurposing provides an opportunity to address the specific mechanisms underlying seizure 

pathology, leading to better outcomes for patients with treatment-resistant forms of epilepsy. 

Challenges and limitations of drug repurposing in personalized medicine 

Regulatory and intellectual property challenges 

One of the primary challenges in drug repurposing lies within regulatory and intellectual property 

barriers [60]. Regulatory agencies such as the FDA and EMA have stringent requirements for drug 

approval, and repurposed drugs, despite their prior approval for other indications, often require 

extensive clinical trials for new applications. Repurposed drugs can move through the regulatory 

pathway faster, but they must still undergo testing for efficacy and safety in the new context. This is 

particularly challenging for diseases with limited patient populations, as conducting large-scale trials 

may not be feasible. Intellectual property (IP) issues further complicate repurposing efforts. Once a drug 

loses patent protection, pharmaceutical companies have less incentive to invest in expensive clinical 

trials needed for repurposing, as generic competitors may benefit without bearing the development 

costs. This issue is especially prominent in personalized medicine, where therapies are designed for 

smaller patient populations. Policy changes, such as extended exclusivity periods or financial 

incentives, are needed to encourage drug repurposing in personalized medicine and make these 

investments more appealing to pharmaceutical companies. 

Data integration and interoperability 

Data integration and interoperability represent significant challenges in both drug repurposing and 

personalized medicine. Comprehensive repurposing efforts rely on diverse datasets, including genetic 

information, pharmacological profiles, electronic health records, and omics data [61]. However, 

consolidating and analyzing this data to identify suitable repurposing candidates is challenging due to 

the lack of standardized data formats and the limitations of current data-sharing frameworks. In 

personalized medicine, integrating patient-specific data from multiple sources, such as genomics, 

proteomics, and metabolomics, can help identify potential repurposing targets aligned with individual 

disease mechanisms [61,62]. Unfortunately, interoperability issues between data platforms, hospitals, 

and research institutions impede effective data integration. Overcoming these challenges requires 

developing universal data standards, interoperable systems, and secure platforms for data sharing. 

Open data initiatives and public-private collaborations could facilitate the data exchange necessary to 

drive repurposing efforts in personalized medicine. 

Biological and patient variability 

The success of drug repurposing in personalized medicine is often limited by the inherent variability 

in patient responses to treatment. Factors such as genetic background, epigenetics, environmental 

influences, and lifestyle all contribute to this variability, impacting the efficacy and safety of repurposed 

drugs. For example, while a drug may demonstrate efficacy in one subset of patients with a specific 

genetic profile, it may have limited or adverse effects in others [3,63]. Furthermore, many diseases 

exhibit considerable heterogeneity, meaning that what works for one individual may not work for 

another, even within the same disease classification. For instance, Alzheimer’s disease patients may 

present with different biomarker profiles, indicating varied underlying mechanisms [64]. Thus, a 

repurposed drug targeting amyloid-beta accumulation may not be effective for patients whose 

pathology is primarily driven by tau protein abnormalities. Personalized approaches to repurposing 

require advanced biomarker screening and patient stratification to ensure that treatments are 

appropriately matched to individual needs. 
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Recommendations for advancing drug repurposing in personalized medicine 

Enhancing regulatory support and incentives 

To overcome the regulatory and intellectual property challenges, there is a need for enhanced 

support from regulatory agencies, including streamlined approval processes and incentives for drug 

repurposing [65]. One approach could be to create a specific pathway for repurposed drugs with 

established safety profiles, enabling expedited approvals when unmet clinical needs exist. Additionally, 

extending market exclusivity for repurposed drugs or providing tax credits could incentivize 

pharmaceutical companies to invest in repurposing efforts. A regulatory framework that allows for 

partial exclusivity—covering only the repurposed indication—would also help reduce market 

competition, ensuring that companies recover the costs of additional clinical trials. In cases where data 

on repurposed drugs are collected through public research funding, government programs could 

provide supplementary grants to support their clinical translation. Enhanced collaboration between 

regulatory agencies and research organizations would facilitate a smoother path to market for 

repurposed drugs, ultimately making personalized treatments more accessible [2,66]. 

Developing robust translational and validation pipelines 

Advancing drug repurposing in personalized medicine requires robust translational and validation 

pipelines that enable rapid movement from discovery to clinical application. Preclinical studies using 

patient-derived models, such as organoids or iPSC-based systems, can help validate drug efficacy in a 

personalized context before moving to clinical trials [67]. Additionally, integrating translational 

research with clinical data collection enables researchers to rapidly identify drugs that perform well in 

real-world settings. To strengthen these pipelines, research institutions, pharmaceutical companies, and 

regulatory agencies must collaborate in designing validation frameworks that prioritize repurposed 

drugs for high-impact diseases. Real-world evidence, collected from electronic health records and 

patient registries, can serve as a valuable resource for validating the clinical effectiveness of repurposed 

drugs. Developing these pipelines ensures a continuous flow of candidates from discovery through 

clinical implementation, especially in areas of high unmet medical need. 

Collaborative and open-source models 

Collaboration is crucial for advancing drug repurposing, particularly within the scope of 

personalized medicine. An open-source model in which pharmaceutical companies, academic 

institutions, and government agencies collaborate and share data could accelerate repurposing 

initiatives. By sharing clinical trial data, drug libraries, and patient health information (in compliance 

with privacy standards), these stakeholders can collectively overcome the limitations of individual drug 

discovery efforts [68]. Public-private partnerships are also essential in pooling resources and expertise 

to tackle complex, multifactorial diseases that require personalized approaches. For instance, the NIH’s 

Accelerating Medicines Partnership (AMP) program collaborates with biopharmaceutical companies, 

patient organizations, and government agencies to develop more effective therapies through open 

science [69,70]. In personalized medicine, such partnerships could focus on generating shared databases 

of patient-specific responses to repurposed drugs, enabling more efficient identification of candidates 

tailored to individual disease mechanisms. An open-source model also facilitates the use of large, 

diverse datasets to support AI-driven drug repurposing algorithms [71]. By granting access to extensive 

pharmacological and clinical data, stakeholders can improve the accuracy of predictive models, 

enabling faster, more precise identification and validation of repurposed drugs. Open-access databases 

like Drug Bank, which compile detailed information on drugs and their targets, are valuable resources 

that could be expanded through collaborative contributions, driving forward both drug repurposing 

and personalized treatment initiatives. 
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Leveraging AI and big data for personalized repurposing 

Artificial intelligence and big data analytics are transformative tools in the drug repurposing field, 

enabling the rapid analysis of vast datasets to match drugs with new therapeutic uses based on patient-

specific variables [72]. AI algorithms, such as machine learning and deep learning, can analyze complex 

datasets from genomics, transcriptomics, proteomics, and electronic health records to identify patterns 

and predict drug-disease interactions [33,73,74]. In personalized medicine, these algorithms help match 

patients to therapies that align with their molecular profiles, thereby optimizing treatment efficacy and 

minimizing adverse reactions. For example, AI-driven platforms can predict how drugs will interact 

with specific genetic mutations, aiding in the identification of repurposing candidates for genetically 

stratified patient groups[74]. By leveraging data from sources like the Genomics England dataset or the 

Cancer Genome Atlas, AI can help researchers identify drugs that might modulate pathways implicated 

in a patient’s disease. Additionally, algorithms that analyze real-world evidence can determine which 

repurposed drugs show efficacy in practice, offering insights that clinical trials alone may not reveal. 

Integrating big data with AI in drug repurposing could also benefit rare disease research. In cases 

where limited patient numbers make clinical trials challenging, AI can analyze historical data to suggest 

potential treatments, allowing clinicians to make more informed choices based on similar patient 

profiles. As AI continues to evolve, incorporating predictive modeling into drug repurposing strategies 

will be critical in scaling personalized medicine, ensuring that patients receive therapies aligned with 

their unique health profiles [72]. 

Conclusion 

This review demonstrates that drug repurposing, when coupled with emerging computational 

platforms and biomarker-led clinical designs, can compress discovery timelines, reduce development 

costs, and increase the probability of regulatory success while advancing the goals of personalized 

medicine. By analysing time-and-cost benchmarks, we showed that repositioned compounds routinely 

move from concept to market in fewer than seven years, less than half the time required for de-novo 

chemical entities, and at a fraction of the out-of-pocket spend. Case studies such as dexamethasone and 

baricitinib highlight how rapid in silico triage, followed by targeted experimental validation, can 

accelerate the journey from bench signal to a positive randomized-controlled-trial outcome. 

Our survey of regulatory frameworks revealed that adaptive pathways—505(b)(2) in the United 

States, orphan-drug incentives in multiple jurisdictions, and collaborative pre-qualification schemes 

further streamline approvals while providing additional exclusivity, thereby lowering commercial 

barriers and encouraging industry participation [17]. Equally important, the integration of multi-omics 

data sets with machine-learning algorithms now enables drug–disease signature matching at 

unprecedented scale [61,73]. These tools refine candidate selection, inform mechanism-of-action 

hypotheses, and, when paired with basket or umbrella trial designs, make it feasible to align repurposed 

drugs with molecularly defined patient sub-groups. Despite these advances, challenges remain. Data 

interoperability, access to high-quality real-world evidence, and equitable availability of biomarker 

diagnostics are uneven across health-care systems. In addition, AI-driven predictions still require 

rigorous prospective validation to avoid false-positive leads and to mitigate bias. 

Future priorities should therefore include: (i) establishing open, standardized data commons that 

continuously feed and benchmark AI pipelines; (ii) expanding biomarker-guided master-protocol trials 

to validate repurposed agents rapidly across multiple endotypes; (iii) harmonizing global regulatory 

guidance to balance speed with safety; and (iv) ensuring that biomarker testing and repurposed 

therapies are affordable and accessible in both high- and low-resource settings. Implementing these 

measures will transform drug repurposing from an opportunistic strategy into a reproducible pillar of 

precision medicine, delivering timely, cost-effective, and patient-tailored treatments worldwide. 
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