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Abstract 

Rhus Toxicodendron (RT) extract has been used in homeopathic and phytomedicines for a few 

centuries. RT chiefly comprises a bioactive chemical named Urushiol. Studies showed RT extracts 

have potential immunomodulatory, anti-inflammatory, and anti-arthritic activities. In this 

experiment, we studied whether ethanolic extracts of RT can inhibit Delta SARS-Cov-2 spike protein 

RBD-induced inflammation, leading to cytokine inequity in fertilized chick embryos (Gallus gallus 

domesticus). Inoculation of Delta SARS-CoV2 spike RBD protein was done in 14th-day-old chick 

embryos along with control, pre-, and post-treatment sets consisting of ultra-diluted RT extract. 

Allantoic fluids from the eggs were collected and preserved at -80 ºC after 48 h to study different 

cytokines. Dissect ion was done, and the liver of each animal was collected and sent for histological 

study. The most prominent result was up-regulation in the expression of Interferon alpha and 

Interleukin-10 genes in RT 6 CH challenged, pre-treatment, and post-treatment experimental sets. 

However, IL 6, IL 8, IL1B, IFN-beta, IFN-gamma, and TGF beta expressions were insignificant in all 

the other experimental sets. The histopathological result showed that embryos in the pre-treatment 

experimental set prevented pathological changes. This study indicated the ethanolic extract of RT can 

up-regulate the expression of Interferon-α genes and the anti-inflammatory cytokine IL-10 gene. 

Therefore, it prevents the spike protein of the delta SARS-CoV-2-induced pathological changes in 

fertilized chick embryos. 
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Introduction                          

The Coronavirus disease 19 (COVID-19) is undeniably the biggest catastrophe the world has 

experienced in the 21st century. It was first reported in Wuhan, Hubei province of China, in late 2019 

[1]. The health experts there reported cases of unusual pneumonia. Later, the causative agent was 

identified and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is 

a type of betacoronavirus with a single-stranded, non-segmented, positive sense RNA genome [2,3]. 

The virus enters the host cell by receptor-mediated endocytosis; when the receptor binding domain 

(RBD) of the virus binds with angiotensin-converting enzyme (ACE) 2, the procedure is triggered [4,5]. 

Following the entry of the viral material, the host's innate immune response is initiated through the 

expression of type 1 interferon (IFN) within the cell. In the first step, immune cells recognize the viral 

components (viral RNA) with pattern recognition receptors (PRRs), then toll-like receptor (TLR)- 7, 8, 

RIG-I recognizes the RNA virus. These produce anti-viral IFN (type I & III) and chemokines [6,7]. In 

COVID-19 patients, the fatality depends on the development of cytokine storms. The 
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hyperinflammatory state is developed by the rapid proliferation and hyperactivation of T-cells, natural 

killer (NK) cells, macrophages, and uncontrolled production of pro-inflammatory cytokines (IL-6, IL-8, 

IL-1β, TNF-α& GM-CSF) and chemokines (CCL-2, CCL-3, CCL-5, IP-10) causes damage in lung alveolar 

epithelium membrane, microvasculature that leads to ARDS and death. So, the main concern lies in 

combating this hyperinflammatory state to reduce the mortality of COVID-19 [8-15]. Traditional 

treatments were also used to manage mild to moderate COVID-19 cases. Medicinal plants have been 

integral to conventional medicine since the ancient era. Flavonoids, polyphenolic compounds, alkaloids, 

and essential oils of different medicinal plants exhibited promising results about COVID-19 [16-18]. 

Trials conducted with a small cohort during the pandemic suggested that plant-based ethanolic 

extracts of Rhus Toxicodendron (RT), Bryonia alba, Pulsatilla nigricans, Nux vomica, and Gelsemium 

sempervirens could produce favorable results in COVID-19 affected participants [19,20]. However, 

many controversies have come along due to a need for more explanation of the mechanism of action. 

The exact target areas still need to be explored and need proper support of scientific explanation.   

However, scientifically-backed data were awaited to explain if those extracts can balance the abnormal 

cytokine expression in COVID-19. Fertilized chick embryo (Gallus gallus domesticus) as an 

experimental model was proven feasible and ideal for studying the alteration of cytokine gene 

expression, as shown in different studies. Furthermore, the fertilized egg model is easy to procure and 

maintain and exhibits a good amount of viral replication, which is complex in animal models. It also 

bears a limited ethical and legal issue (In this experiment 14th, day fertilized chick eggs were procured; 

ethical issues are not required up to 18 days) [21,22]. Goswami et al. showed ethanolic extracts of 

Bryonia alba could upregulate IFN – α, IFN- ß, and TGF – ß gene expression in fertilized chick embryos 

[23]. Moreover, studies in identical models with unalike interventions showed notable results in chick 

embryos [24,25]. This is a novel work as no such study of ultra-diluted Rhus Toxicodendron extract has 

been studied so far against SARS-CoV-2 pathogenesis to explore its immune-modulatory activity in the 

fertilized chick embryo model. 

Toxicodendron sp., previously known as Rhus Toxicodendron, belongs to the family Anacardiaceae. 

More than 80 genera and 600 - 750 species are under the Anacardiaceae family, typically disseminated 

in tropical Africa, Asia, and the Americas. Plants of Genus Toxicodendron, such as Toxicodendron 

radicans (poison-ivy) and Toxicodendron diversilobum (poison oak), are the most essential sources for 

the extracts of RT. Several pre-clinical studies have shown that RT extracts have immunomodulatory, 

anti-inflammatory, and anti-arthritic activities. RT extracts, both in crude and series of dilutions, 

accelerated the metabolic activities of PMN cells by increasing the phagocytic activity [26,27]. RT also 

helps in the expression of COX2 mRNA and decreases NO generations in mouse pro-osteoblastic cell 

lines [28]. Several studies showed the efficacy of RT in reducing Carrageenan-induced rat paw edema 

[29]. RT chiefly comprises an active immunogen named Urushiol. Urushiol came from the Japanese 

word for lacquer tree (urushi), a combination of organic compounds and oily resin mixed within [30]. 

Numerous lipophilic catechol derivatives are present 

in this organic mixture, pentadecyl-catechols and 

heptadecyl-catechols being more abundant. 

Pentadecyl-catechols and heptadecyl-catechols are 

organic compounds with 15-carbon side chains 

(pentadecyl) or 17-carbon side chains (heptadecyl) 

(Figure 1) of different degrees of saturation that are 

attached to a ringed carbon structure, catechol 

(C6H4(OH)2). Urushiol is chiefly known for causing 

irritating delayed allergic contact dermatitis, 

manifested by redness, swelling, and oozing, with a 

persistent itching sensation [31,32].                                                                                                                                                                                                                           
                                                                                                                             Figure 1. Chemical Structure of Urushiol. 
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Materials and Methods 

The spike protein 

For this study, the Delta SARS-CoV-2 spike RBD (L452R, E484Q) protein was manufactured by 

ABclonal Lot: 9621050601, Cat. No. RPO2266, Code:  WH192258, was acquired. The HEK 293 expression 

system is used to produce this recombinant protein. The target protein is made up of the SARS-CoV-2 

spike RBD sequence (Arg 319-Phe541) attached to a poly-histidine tag at the C-terminus (with mutations 

L452R, E484Q, Accession #YP-009724390.1). 

Medicine & vehicle alcohol 

For this study, both Rhus Toxicodendron (RT) (6CH potency according to homeopathic 

pharmacopoeia comprises material at attogram level) and vehicle alcohol were acquired from a 

government-accepted alternative medicine manufacturing company, “HAPCO, India”. 

Fertilized egg inoculation 

14th day-old fertilized chick eggs (Gallus gallus domesticus) were obtained from the State Poultry 

Farm, Kolkata. At first, eggs were cleaned with distilled water. Next, air sacs were identified by candling 

and marked with a marker pen. The shells of those eggs were washed with 70% ethanol and 10% 

povidone-iodine solution. Then, using a sterile needle, small punctures were made at the center of the 

air sacs [33]. Every experimental set was then separated, a 100 µl volume of previously chosen materials 

was inserted via the amniotic route of the eggs, and identification marks were specified for each set 

(Given below). After the inoculation, the puncture sites were closed with a sterilized sticker. After that, 

all the inoculated eggs were incubated at 38 ºC at 60% humidity for 48 h. After 48 h, allantoic fluid (5 -

10 ml) was collected and stored at 80 ºC. Hepatic tissue was also dissected and preserved for further 

study. 

The experimental sets were: 

Set-1: 14th day embryonated eggs - Control 

Set-2: Eggs challenged with 70% v/v molecular grade ethanol - Alcohol control 

Set-3: Eggs challenged with original spike protein (S) RBD antigen - Antigen control 

Set-4: Eggs challenged with RT 6CH - Medicine control 

Set-5: RT 6CH was inoculated first, followed by antigen after one hour of incubation – Pre-treatment 

Set 

Set-6: Antigen was inoculated first, followed by RT 6CH after one hour of incubation – Post-treatment 

Set 

Estimation of cytokine expression 

Comparative gene expression studies were determined after real-time PCR (Bio-Rad CFX96, 

Singapore) with SYBR Green tagged primers, dNTPs, Taq polymerase, MgCl2, buffer, etc. Chiefly, 8 

cytokines genes, i.e., chicken Interferons (chIFN) α, β, γ; chicken Interleukins – chIL-1β, chIL-6, chIL-8, 

chIL-10; chicken Transforming Growth Factor (chTGF) β1 concerning β-actin were analyzed. Regarding 

RT PCR analysis, 2 µL of cDNA and 18µL of Taq universal sybr green supermix (Bio-Rad, USA) were 

mixed and analyzed, as per RT-PCR instrument following standard protocol [34].  

Histological study 

Paraffin blocks with the tissue samples were made after its fixation in formol saline, followed by 

using a microtome, 3 – 5 µm thick sections of it were made. After that, haematoxylin and eosin staining 

(H & E staining) was done following the standard guidelines [35].  

Results 

Changes in the Cytokine Gene Expression 
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In a concentration of 10 microgram/ml, delta SARS-CoV-2 spike protein RBD antigen increases the 

expression of the IFN- α gene by 1692-fold, but the expression of other cytokines was not significant in 

this study. In the other control set with Alcohol (70%), none of the cytokine gene expression was 

significant. In the experimental sets consisting of Rhus Toxicodendron 6CH (directly), pre-treatment, and 

post-treatment with Rhus Toxicodendron, the IFN- α and IL-10 expression were significantly increased. 

However, IL 6, IL 8 IL1B, IFN-beta, IFN-gamma, and TGF beta expressions were insignificant. Changes 

of all the cytokine gene expression is given in Table 1. 

Table 1. Semi-quantitative increased gene expression of different cytokines in different experimental sets. 

 

General appearance of the chick embryo 

Embryos of the Antigen control set were dead and putrefied. Pre-treatment and Post-treatment set 

embryos showed better vitality and growth than standard control. Lungs of all the embryos of each set 

were collapsed. Antigen control set embryos showed gross hemorrhagic areas at different parts when 

dissected. No significant macroscopic changes were found in all remaining sets. Different experimental 

sets with representative pictures of embryos are depicted in Figure 2.   

 
Figure 2. Macroscopic appearance of embryos in experimental sets. Set 1: control; set 2: alcohol control; set 3: medicine control; 

set 4: antigen control; set 5: pre-treatment set (Rhus Toxicodendron 6CH challenged by antigen); set 6: post-treatment set (antigen 

challenged by Rhus Toxicodendron 6CH). 

Histopathological changes 

With controlled alcohol, few necrotic changes are present. The antigen set has necrotic changes with 

many fibroblasts and microclots in the blood vessels. The liver is almost standard in the preventive (pre-

treatment) set, with very few organized 

microclots in the blood vessels. In the curative 

(post-treatment) set, however, the necrotic 

changes and proliferation of sum fibroblasts are 

prominent.   

Statistical analysis 

Here, the numbers I – VIII indicates the 

following: I – Interferon alpha (IFN α), II – 

Interferon beta (IFN β), III – Interferon-gamma 

(IFN γ), IV – Interleukin 8 (IL -8), V – Interleukin 

10 (IL -10), VI – Interleukin 1 beta (IL -1β), VII – 

Transforming growth factor beta 1 (TGF-β1), 

VIII – Interleukin 6 (IL -6) (Table 2 & 3).                                           Details of statistical analysis  

SETS IFN- α IFN- ß IFN- ƴ IL 8 IL 10 IL 1 B TGF B1 IL 6 

SET-1 0 0 0 0 0 0 0 0 

SET-2 116.97 36.63 2.36 3.16 0 2.36 2.97 59.096 

SET-3 1692.57 149.085 2.02 3.02 2.948 2.02 74.28 7.285 

SET-4 17379.978 349.032 0.360 9.417 2244.961 0.513 0.000 52.235 

SET-5 12245.677 27.074 523.236 26.172 5932.635 2.246 0.763 60.097 

SET-6 14684.459 137.973 43.268 27.464 4117.113 1.179 4.832 58.311 
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Table 2. Correlations between group.  

 I II III IV V VI VII 

II 0.299             

III 0.141 -0.124           

IV 0.260 0.927 0.107         

V 0.531 -0.293 0.743 -0.075       

VI 0.161 0.980 -0.040 0.958 -0.286     

VII 0.156 0.983 -0.074 0.952 -0.318 0.998   

VIII 0.664 0.311 0.089 0.236 0.256 0.244 0.208 

 
Table 3. Pairwise pearson correlations.  

Sample 1 Sample 2 Correlation 95% CI for ρ P-Value 

II I 0.299 (-0.456, 0.803) 0.435 

III I 0.141 (-0.577, 0.736) 0.718 

IV I 0.260 (-0.488, 0.788) 0.499 

V I 0.531 (-0.206, 0.883) 0.141 

VI I 0.161 (-0.563, 0.746) 0.679 

VII I 0.156 (-0.567, 0.743) 0.689 

VIII I 0.664 (-0.001, 0.922) 0.051 

III II -0.124 (-0.728, 0.589) 0.751 

IV II 0.927 (0.686, 0.985) 0.000 

V II -0.293 (-0.801, 0.460) 0.444 

VI II 0.980 (0.904, 0.996) 0.000 

VII II 0.983 (0.920, 0.997) 0.000 

VIII II 0.311 (-0.445, 0.808) 0.416 

IV III 0.107 (-0.600, 0.720) 0.784 

V III 0.743 (0.156, 0.942) 0.022 

VI III -0.040 (-0.686, 0.641) 0.919 

VII III -0.074 (-0.703, 0.621) 0.851 

VIII III 0.089 (-0.612, 0.711) 0.821 

V IV -0.075 (-0.704, 0.620) 0.848 

VI IV 0.958 (0.809, 0.991) 0.000 

VII IV 0.952 (0.782, 0.990) 0.000 

VIII IV 0.236 (-0.508, 0.778) 0.541 

VI V -0.286 (-0.798, 0.467) 0.456 

VII V -0.318 (-0.811, 0.439) 0.404 

VIII V 0.256 (-0.491, 0.787) 0.505 

VII VI 0.998 (0.988, 1.000) 0.000 

VIII VI 0.244 (-0.501, 0.782) 0.526 

VIII VII 0.208 (-0.529, 0.766) 0.591 

 

Discussion 

Interferons (IFNs) are a group of prominent cytokines that have various biological responses. They 

contribute to innate and adaptive immunity to counter viral infections. IFNs are chiefly produced by 

lymphocytes, NK cells, B-cells, T-cells, epithelial cells, and hepatocytes. Likewise, SARS-CoV-2 IFNs 

trigger the immune response in other viral infections as the first line by recognizing the pathogen-

associated molecular patterns (PAMPs). Data suggests IFNs play a crucial role in COVID-19 by 

preventing the progression to severe pneumonia [36,37]. It was seen that IFN alpha and IFN beta were 

highly reduced in severe COVID-19 patients. In this experiment, the expression of IFN alpha is 

significantly higher in the pre-treatment (>12200 folds increase), post-treatment (>14600 folds increase), 

and direct RT (>17300 folds increase) challenged sets (Table 1). But in the control group, consisting of 

the alcohol (70%), the change in expression was not significant enough. Thus, the effect of vehicle 

ethanol on the RT is ruled out. Antigen alone upregulated the IFN alpha gene by 1600 folds but was 

also insignificant in the RT groups. Therefore, the result shows RT has definitive curative and preventive 

properties in vitro. The chief anti-inflammatory cytokine, Interleukin-10 (IL-10), is a crucial cytokine for 
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the host immune response and prevention of tissue damage in the initial phase of the immune response. 

Again, IL-10 suppresses the pro-inflammatory cytokines in the recovery phase of viral infection in cases 

of immune system hyperactivation [38]. In the pre-treatment and post-treatment sets, IL-10 gene 

expression is upregulated by 5900 folds and 4100 folds, more than the RT (direct) set. There were 

insignificant responses to antigen and alcohol control sets. The presence of RT could upregulate the IL-

10 gene expression. Yet, the expression of inflammatory cytokine genes (IL-6, IL-8, IL-1ß, TGF-ß) was 

not significant in all the experimental sets. In statistical analysis, there was also a significant correlation 

between IFN alpha and IL 10 cytokine (r = 0.531), adding an essential outcome to the results. Urushiol 

is the important bioactive component of RT; apart from its ability to make allergic contact dermatitis, it 

displays various biological activities that include anti-oxidative activity in non-alcoholic fatty liver 

disease [39], cytotoxic activity on human ovarian cells [40], antibacterial activity in different studies [41]. 

Urushiol components were able to down-regulate the expression of pro-inflammatory cytokine 

expression in Helicobacter pylori-induced infection in mice. Urushiol is also known to increase the 

urushiol-specific T-cells locally [42]. In severe COVID-19-affected patients, there is a decline in CD 3+ 

T-cells, and due to loss in CD 8 T cells, there is an inversion of the CD4 to CD8 ratio. So, T cells are 

potentially damaged by the virus. Here in this study, it can be hypothesized that RT can increase the 

urushiol-mediated T-cells and anti-inflammatory cytokines and maintain the cytokine milieu in the 

organism. However, this experiment cannot determine whether urushiol upregulates the T-cell receptor 

gene or inhibits the TLR4/MyD88/NF-κB signaling pathway during the hyperinflammatory state of 

COVID-19. 

Conclusion 

In this study, we elucidated that the diluted ethanol extract of Rhus toxicodendron6CH can up-

regulate the expression of Interferon genes and the anti-inflammatory cytokine IL-10 gene. IFN alpha 

gene expression and IL 10 gene expression significantly increased in experimental sets directly treated 

with Rhus Toxicodendron 6CH, pre-treatment, and post-treatment sets. Therefore, this experiment also 

helps us to understand the curative and preventive effects of ethanolic extracts of Rhus Toxicodendron 

6CH. Nevertheless, all phases of human trials are required before their acceptance for treatment in the 

population. 
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